Tomato Recognition for Harvesting Robots Considering Overlapping Leaves and Stems

Author:

Ikeda Takeshi,Fukuzaki Ryo,Sato Masanori,Furuno Seiji,Nagata Fusaomi, , , ,

Abstract

In recent years, the declining and aging population of farmers has become a serious problem. Smart agriculture has been promoted to solve these problems. It is a type of agriculture that utilizes robotics, and information and communication technology to promote labor saving, precision, and realization of high-quality production. In this research, we focused on robots that can harvest tomatoes. Tomatoes are delicate vegetables with a thin skin and a relatively large yield. During automatic harvesting of tomatoes, to ensure the operation of the harvesting arm, an input by image processing is crucial to determine the color of the tomatoes at the time of harvesting. Research on robot image processing technology is indispensable for accurate operation of the arm. In an environment where tomatoes are harvested, obstacles such as leaves, stems, and unripe tomatoes should be taken into consideration. Therefore, in this research, we propose a method of image processing to provide an appropriate route for the arm to ensure easy harvesting, considering the surrounding obstacles.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3