Development of Human-Size Swallowing Robot

Author:

Sato Hisaki1,Kobayashi Hiroshi1,Matsumoto Kenta1ORCID,Hashimoto Takuya1ORCID,Michiwaki Yukihiro2

Affiliation:

1. Department of Mechanical Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan

2. Department of Oral and Maxillofacial Surgery, School of Medicine, Toho University, 5-21-16 Omorinishi, Ota-ku, Tokyo 143-0015, Japan

Abstract

The number of patients with swallowing disorders is increasing according to the aging of society, although swallowing plays a significant role in the dietary process. The process of swallowing includes a very fast reflexive motion; there are difficulties in analyzing its mechanism even with the latest medical imaging technologies. In recent years, a simulator, named “Swallow Vision®,” has been developed from medical images such as MRI and CT to clearly visualize swallowing motion. It enables us to understand the kinesiology and analyze the motion of organs in swallowing. By using kinematic data obtained from this simulator and referring to medical knowledge, we develop a robotic simulator that has the potential to mimic human swallowing motion. The robot is able to perform tongue depressor and pharynx contraction to swallow food bolus. A performance evaluation is conducted to determine whether it is possible to swallow food bolus properly or where the bolus remains when failing.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Reference18 articles.

1. Y. Yamada, “Swallowing,” Physical Therapy Japan, Vol.25, No.4, pp. 235-239, 1998 (in Japanese). https://doi.org/10.15063/rigaku.KJ00003223477

2. S. Teramoto et al., “High incidence of aspiration pneumonia in community- and hospital-acquired pneumonia in hospitalized patients: A multicenter, prospective study in Japan,” J. of the American Geriatrics Society, Vol.56, No.3, pp. 577-579, 2008. https://doi.org/10.1111/j.1532-5415.2008.01597.x

3. Y. Michiwaki, M. Yokoyama, Y. Kinumatsu, K. Mori, and K. Michi, “Cine MRI to demonstrate normal swallow,” J. of the Japanese Stomatological Society, Vol.51, No.4, pp. 237-243, 2002 (in Japanese). https://doi.org/10.11277/stomatology1952.51.237

4. Y. Inamoto and E. Saitoh, “Morphologic and kinematic analysis of swallowing using 3D dynamic CT,” Stomato-pharyngology, Vol.31, No.1, pp. 15-19, 2018 (in Japanese). https://doi.org/10.14821/stomatopharyngology.31.15

5. R. W. Bastian, “The videoendoscopic swallowing study: An alternative and partner to the videofluoroscopic swallowing study,” Dysphagia, Vol.8, No.4, pp. 359-367, 1993. https://doi.org/10.1007/BF01321780

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3