Basic Experiments Toward Mixed Reality Dynamic Navigation for Laparoscopic Surgery
-
Published:2022-12-20
Issue:6
Volume:34
Page:1253-1267
-
ISSN:1883-8049
-
Container-title:Journal of Robotics and Mechatronics
-
language:en
-
Short-container-title:J. Robot. Mechatron.
Author:
Chen Xiaoshuai,Sakai Daisuke,Fukuoka Hiroaki,Shirai Ryosuke,Ebina Koki,Shibuya Sayaka,Sase Kazuya,Tsujita Teppei,Abe Takashige,Oka Kazuhiko,Konno Atsushi, , , , ,
Abstract
Laparoscopic surgery is a minimally invasive procedure that is performed by viewing endoscopic camera images. However, the limited field of view of endoscopic cameras makes laparoscopic surgery difficult. To provide more visual information during laparoscopic surgeries, augmented reality (AR) surgical navigation systems have been developed to visualize the positional relationship between the surgical field and organs based on preoperative medical images of a patient. However, since earlier studies used preoperative medical images, the navigation became inaccurate as the surgery progressed because the organs were displaced and deformed during surgery. To solve this problem, we propose a mixed reality (MR) surgery navigation system in which surgical instruments are tracked by a motion capture (Mocap) system; we also evaluated the contact between the instruments and organs and simulated and visualized the deformation of the organ caused by the contact. This paper describes a method for the numerical calculation of the deformation of a soft body. Then, the basic technology of MR and projection mapping is presented for MR surgical navigation. The accuracy of the simulated and visualized deformations is evaluated through basic experiments using a soft rectangular cuboid object.
Funder
Japan Society for the Promotion of Science
Publisher
Fuji Technology Press Ltd.
Subject
Electrical and Electronic Engineering,General Computer Science
Reference29 articles.
1. J. Hallet, L. Soler, M. Diana, D. Mutter, T. F. Baumert, F. Habersetzer, J. Marescaux, and P. Pessaux, “Trans-thoracic minimally invasive liver resection guided by augmented reality,” J. of the American College of Surgeons, Vol.220, No.5, pp. e55-e60, 2015. 2. V. Asfour, E. Smythe, and R. Attia, “Vascular injury at laparoscopy: a guide to management,” J. of Obstetrics and Gynaecology, Vol.38, No.5, pp. 598-606, 2018. 3. T. Tokuyasu, K. Motodoi, Y. Endo, Y. Iwashita, T. Etoh, and M. Inomata, “Training System for Endoscopic Surgery Aiming to Provide the Sensation of Forceps Operation,” J. Robot. Mechatron., Vol.30, No.5, pp. 772-780, 2018. 4. I. Murasawa, S. Murofushi, C. Ishii, and H. Kawamura, “Development of a Robotic Laparoscope for Laparoscopic Surgery and its Control,” J. Robot. Mechatron., Vol.29, No.3, pp. 580-590, 2017. 5. M. Osaki, T. Omata, and T. Takayama, “Assemblable Hand for Laparoscopic Surgery with Phased Array and Single-Element Ultrasound Probes,” J. Robot. Mechatron., Vol.25, No.5, pp. 863-870, 2013.
|
|