The Lifelog Monitoring System for Honeybees: RFID and Camera Recordings in an Observation Hive

Author:

Ai Hiroyuki,Takahashi Shinya, ,

Abstract

A typical honeybee colony contains more than 15,000 individuals, each with its own task related to supporting the hive and maintaining the colony. In previous studies on honeybees, observing individual animals’ behaviors has been a difficult and time-consuming task to understand the relationship between in-hive communication and environmental changes outside the hive, therefore it is necessary in any attempt to develop applying a remote sensing technology. To allow researchers to pass much of this tracking work on to computers, we have developed the lifelog monitoring system for honeybees, which uses RFID and Raspberry Pi camera recordings. Our preliminary experiments consisted of several tests aimed at identifying the optimal conditions for this system. First, two commercial RFID readers with antennas were compared in terms of their sensitivity to signals from RFID tags placed at various distances. We found that the UP16-1000-J2 reader was much more sensitive and had a longer effective range compared to the UP4-200-J2. The most sensitive region in the RFID antenna on the UP16-1000-J2 reader was 30 mm long and 5 mm wide at its center. Based on this preliminary information, we designed and built a passage from the interior of the observation hive to the outside so that all RFID-tagged bees could be detected individually by the RFID reader as they walked through the passage. Moreover, to detect the direction of either departure or arrival of each bee, we placed two RFID antennas under the passage between the observation hive and the outside, one near each end of the passage. All departure and arrival times of RFID-tagged bees were detected with their ID numbers. Using recorded data from these two RFID readers, we could measure how much time each tagged bee spent outside the hive. In addition to RFID recording on the passage, we also tracked all in-hive movements of numbered RFID-tagged honeybees. In-hive movements were simultaneously, comprehensively and automatically recorded via six Raspberry Pi camera modules arranged on the two sides of the observation hive. The cameras were set to record from 6:30 to 19:30 every day for one month, once or twice each year from 2015 to 2018. The in-hive behaviors of these bees were analyzed according to a simultaneous tracking algorithm that we developed for this purpose. Data from the monitoring system revealed that time spent outside the hive increased markedly after following the waggle dance. In addition to its findings on bee behavior, this study also confirms the effectiveness of our recording system combining RFID and Raspberry Pi cameras for honeybee lifelog monitoring.

Funder

Ministry of Education, Science, Technology, Sports, and Culture of Japan

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3