Identification of Shaft Stiffness and Inertias in Flexible Drive Systems
-
Published:2023-02-20
Issue:1
Volume:35
Page:212-217
-
ISSN:1883-8049
-
Container-title:Journal of Robotics and Mechatronics
-
language:en
-
Short-container-title:J. Robot. Mechatron.
Author:
Dhaouadi Rached1ORCID, Hafez Ishaq1ORCID
Affiliation:
1. College of Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, UAE
Abstract
This letter presents an identification method for motor drive systems with flexible shafts and couplings using frequency response measurement. The drive system can be approximated as a two-mass non-rigid mechanical system to model the lowest resonant frequency with three parameters to be identified: the motor side inertia, the load side inertia, and the shaft stiffness. The proposed method does not require knowledge of the total inertia as many other techniques require. However, additional known inertia is added or removed from the load side assembly. The frequency response measurement is carried out with and without additional inertia to identify the resonant and anti-resonant frequencies. It is shown that this procedure directly identifies the two inertias and shaft stiffness and can be utilized to assist in the commissioning of electrical drives.
Publisher
Fuji Technology Press Ltd.
Subject
Electrical and Electronic Engineering,General Computer Science
Reference17 articles.
1. A. H. Jafari, R. Dhaouadi, and A. Jhemi, “Nonlinear Friction Estimation in Elastic Drive Systems Using a Dynamic Neural Network-Based Observer,” J. Adv. Comput. Intell. Intell. Inform., Vol.17, No.4, pp. 637-646, 2013. 2. C. Shao, J. Togashi, K. Mitobe, and G. Capi, “Utilizing the Nonlinearity of Tendon Elasticity for Compensation of Unknown Gravity of Payload,” J. Robot. Mechatron., Vol.30, No.6, pp. 873-879, 2018. 3. H. Muramoto, K. Tomita, and T. Morita, “Compliance Analysis of Construction Machinery Front by Direct Stiffness Method,” J. Robot. Mechatron., Vol.20, No.3, pp. 481-489, 2008. 4. K. Sakaguchi, T. Sudo, N. Bushida, Y. Chiba, Y. Asai, and K. Kikuchi, “Wheel-Based Stair Climbing Robot with Hopping Mechanism – Fast Stair Climbing and Soft Landing Using Vibration of 2-DOF System –,” J. Robot. Mechatron., Vol.19, No.3, pp. 258-263, 2007. 5. F. Schütte, S. Beineke, H. Grotstollen, N. Fröhleke, U. Witkowski, U. Rückert, and S. Rüping, “Structure-and parameter identification for a two-mass-system with backlash and friction using a self-organizing map,” European Conf. on Power Electronics and Applications, Vol.3, pp. 3358-3363, 1997.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|