Quadrotor Drone Hovering in Ground Effect

Author:

Tanabe Yasutada,Sugawara Hideaki,Sunada Shigeru,Yonezawa Koichi,Tokutake Hiroshi, , , ,

Abstract

A variable-pitch-controlled quadrotor drone was simulated in the ground effect using a high-fidelity CFD solver. In contrast to a single rotor in the ground effect, which has been extensively studied for conventional helicopters, the flow fields around multiple rotors are complex. In this study, the rotating speed of the rotors was maintained constant, and the blade pitch angles were adjusted so that the total thrust of the multicopter was the same regardless of the rotor height from the ground. It was observed that the power required for the quadrotors, which generate the same thrust, decreases when the rotors are approaching the ground from the height where they can be considered to be out of the ground effect, but increases locally when the rotor height is approximately the rotor radius, owing to flow recirculation into the rotor, and then decreases abruptly when the rotors further approach the ground. The outwash from the quadrotors depends heavily on the direction relative to the quadrotor layout. Along the plane crossing the diagonal rotor centers, the outwash velocity profiles resemble those of a single rotor; however, the outwash from the rotor gaps is stronger and extends to a much higher altitude.

Funder

Japan Society for the Promotion of Science

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Reference21 articles.

1. Y. Tanabe, S. Saito, N. Ooyama, and K. Hiraoka, “Study of a Downwash Caused by a Hovering Rotor in Ground Effect,” Proc. of 34th European Rotorcraft Forum, Liverpool, UK, pp. 589-599, 2008.

2. I. C. Cheeseman and W. E. Bennett, “The effect of the ground on a helicopter rotor,” ARC R&M, No.3021, pp. 1-10, 1955.

3. T. O’Bryan, “An Investigation of the effect of downwash from a VTOL aircraft and a helicopter in the ground environment,” NASA Technical Note, D-977, 1961.

4. J. S. Hayden, “The effect of the ground on helicopter hover power required,” Proc. of AHS 32nd Annual Forum, Washington, DC, pp. 1-11, 1976.

5. H. Usuda, N. Iboshi, and N. Itoga, “Ground effect of a hovering rotor over confined area,” 45th Aircraft Symp., Kitakyushu, Japan, October 10-12, 2007 (in Japanese).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3