Personalized Subjective Driving Risk: Analysis and Prediction

Author:

Bao Naren,Carballo Alexander,Miyajima Chiyomi,Takeuchi Eijiro,Takeda Kazuya, , , ,

Abstract

Subjective risk assessment is an important technology for enhancing driving safety, because an individual adjusts his/her driving behavior according to his/her own subjective perception of risk. This study presents a novel framework for modeling personalized subjective driving risk during expressway lane changes. The objectives of this study are twofold: (i) to use ego vehicle driving signals and surrounding vehicle locations in a data-driven and explainable approach to identify the possible influential factors of subjective risk while driving and (ii) to predict the specific individual’s subjective risk level just before a lane change. We propose the personalized subjective driving risk model, a combined framework that uses a random forest-based method optimized by genetic algorithms to analyze the influential risk factors, and uses a bidirectional long short term memory to predict subjective risk. The results demonstrate that our framework can extract individual differences of subjective risk factors, and that the identification of individualized risk factors leads to better modeling of personalized subjective driving risk.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Reference54 articles.

1. Y. Zhang, E. K. Antonsson, and K. Grote, “A new threat assessment measure for collision avoidance systems,” Proc. of 2006 IEEE Intelligent Transportation Systems Conf., pp. 968-975, 2006.

2. C. Laugier, I. E. Paromtchik, M. Perrollaz, M. Yong, J.-D. Yoder, C. Tay, K. Mekhnacha, and A. Nègre, “Probabilistic analysis of dynamic scenes and collision risks assessment to improve driving safety,” IEEE Intelligent Transportation Systems Magazine, Vol.3, No.4, pp. 4-19, 2011.

3. Y. Zheng, J. Wang, X. Li, C. Yu, K. Kodaka, and K. Li, “Driving risk assessment using cluster analysis based on naturalistic driving data,” Proc. of 17th Int. IEEE Conf. on Intelligent Transportation Systems (ITSC), pp. 2584-2589, 2014.

4. S. Lefèvre, D. Vasquez, and C. Laugier, “A survey on motion prediction and risk assessment for intelligent vehicles,” Robomech J., Vol.1, 1, 2014.

5. X. Wang, M. Chen, M. Zhu, and P. Tremont, “Development of a kinematic-based forward collision warning algorithm using an advanced driving simulator,” IEEE Trans. on Intelligent Transportation Systems, Vol.17, No.9, pp. 2583-2591, 2016.

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3