High-Speed and Low-Latency 3D Fluorescence Imaging for Robotic Microscope

Author:

Yamato Kazuki,Iuchi Masatoshi,Oku Hiromasa, ,

Abstract

In this study, we propose a high-speed and low-latency 3D fluorescence imaging method for robotic microscopes. The prototype system consists of a focus-tunable lens called a TAG lens, which operates at several hundred kHz, an image intensifier (I.I.) that enhances faint light such as fluorescence, and a high-speed vision system that can transfer acquired images to the host PC in 500 Hz. The proposed method can acquire images at arbitrary focal lengths at frame rates on the order of 1 kHz by synchronizing the focal-length fluctuation of the TAG lens and the exposure timing of the I.I., whose duration is a few hundred nanoseconds. The low-latency we aim for in this paper is on the order of a few milliseconds. A prototype system was developed to validate the proposed method. High-speed 3D tracking of the Brownian motion of a fluorescent bead of 0.5 μm diameter was demonstrated to verify the feedback performance of the proposed low-latency 3D fluorescence imaging method.

Funder

Japan Science and Technology Agency

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3