Development of a Microfluidic Ion Current Measurement System for Single-Microplastic Detection

Author:

Kishimoto Yuta1,Ide Sachiko1,Naito Toyohiro1ORCID,Nakashima Yuta23ORCID,Nakanishi Yoshitaka2ORCID,Kaji Noritada1ORCID

Affiliation:

1. Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan

2. Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan

3. International Research Organization for Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan

Abstract

Microplastics (MPs) can adsorb heavy metals and metalloids and may cause a potential health hazard. Precise measurements of their size, shape, composition, and concentration at a single-MP level are important to evaluate their potential toxicity and identify their original source. However, current single-MP analytical methods such as micro-Raman spectroscopy and scanning electron microscopy have low throughput. Therefore, in this study, we applied the ion current sensing method, which has been used for single cell analysis, to single-MP analysis and examined whether size measurement and composition analysis of MPs at the single particle level are possible. In single-MP measurements, plastic particles must be mono-dispersed in solution at least within the measurement time. The agglomeration behavior was carefully observed after adding sodium dodecyl sulfate to tris-borate-EDTA buffer at 2–16 mM. Under these conditions, the size of polystyrene beads could be measured using the ion current sensing under the mono-dispersed condition. Next, ion current sensing was performed on four pseudo MPs fabricated from different materials (polyethylene, polyethylene terephthalate, polypropylene, and polyvinyl chloride) that were mechanically grazed and UV-irradiated to imitate real marine MPs. Although significant differences in the ion current signals from different material MPs were not observed, fast (100 MPs within 2 s) and precise measurements in the MPs’ sizes at a single-MP level were successfully achieved.

Funder

Japan Science and Technology Agency

Japan Society for the Promotion of Science

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3