Environmental Mapping of Underwater Structures Based on Remotely Operated Vehicles with Sonar System

Author:

Ma Bochen1ORCID,Du Tiancheng1,Miyoshi Tasuku1ORCID

Affiliation:

1. Division of Science and Engineering, Graduate School of Arts and Sciences, Iwate University, 4-3-5 Ueda, Morioka, Iwate 020-8551, Japan

Abstract

Recently, underwater robotics has rapidly developed, and is often used in open-water exploration and underwater operations in known environments. However, there are still several problems in exploring the interiors of complex underwater environments, which are essential for scientific exploration and industrial applications, such as caves and shipwrecks. This study aims to complete the exploration of the environment of structures under water bodies. A real-time manipulative small underwater robot was designed and developed. The robot’s autonomous depth control and linear motion-assisted control are also realized by real-time sensor data processing, which provides stability and operability to move in small areas and complex environments. The sonar system is used to construct a submap for small-area scanning. Finally, by combining the odometer algorithm and contour extraction, the submaps are stitched together to construct a complete map of the internal underwater environment.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3