Modulation of Velocity Perception by Engine Vibration While Driving

Author:

Tachiiri Motoki, ,Tanaka Yoshihiro,Sano Akihito

Abstract

While driving a vehicle, perceiving velocity is important for appropriate operation and is one of the most important factors for preventing collisions and traffic congestion. In contexts where perceiving velocity changes is difficult, such as on an undulating road, the velocity may exceed the speed limit or traffic congestion may occur due to heavy braking to avoid a collision. Hence, we proposed a method of modulating the perception of velocity through tactile stimulation to promote adequate operation for the driver. In contrast to methods using visual and auditory stimulation, this method has advantages of not increasing the visual cognitive load, not disturbing the enjoyment of music, and reliably stimulating the driver. In this study, we constructed a velocity perception model based on vibrotactile stimulation induced by the engine speed and proposed a method of changing the vibrotactile stimulation by altering the shift position of the transmission to modulate the perception of velocity without additional vibration actuators, regardless of the actual velocity. We measured the seat and engine vibration using two different vehicles. The results demonstrated that the peak acceleration frequencies are proportional to engine speed, indicating that the vibration depends upon the engine speed, not the velocity. We implemented a method of changing the shift position in an actual vehicle and verified the feasibility of the method through a psychophysical experiment. The results showed that drivers perceived a higher velocity with increasing engine speed and lower velocity with decreasing engine speed.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Reference21 articles.

1. M. Koshi, M. Kuwahara, and H. Akahane, “Capacity of sags and tunnels on japanese motorways,” ITE J., pp. 17-22, 1992.

2. Y. Mori, M. Kurihara, A. Hayama, and S. Ohkuma, “A study to improve the safety of expressways by desirable combinations of geometric alignments,” Proc. of 1st Int. Symp. on Highway Geometric Design Practices, 1995.

3. A. Kitaoka, “Slope illusion (magnetic hill) in radan,” Art and Its Role in the History: Between Durability and Transient, pp. 751-760, 2015.

4. C. Blakemore and F. W. Campbell, “On the existence of neurones in the human visual system selectively sensitive to the orientation and size of retinal images,” J. of Physiology, Vol.203, No.1, pp. 237-260, doi: 10.1113/jphysiol.1969.sp008862, 1969.

5. M. A. Winnett and A. H. Wheeler, “Vehicle-activated signs – a large scale evaluation,” TRL Report, TRL548, 2002.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3