Author:
Mitani Atsushi,Muramatsu Masumi, ,
Abstract
In aging society like Japan, maintaining the quality of life (QOL) is an important objective. The oral cavity has various significant functions that contribute to the QOL. Elderly people are susceptible to the swallowing disorders owing to various factors associated with advancing age. In such cases, mealtime assistance can provide elderly persons appropriate eating situations. Thus, mealtime assistance skills are essential for students in nursing and caregiver education. Recently, simulation education has attracted attention as an effective educational process for nursing and caregiver students before their clinical practice in a hospital or care house. In this educational process, a patient model that mimics specific symptoms called the simulation model, is used to learn the symptoms and its care process in the same clinical environment as actual. We have attempted to develop several oral care simulation models, and we have earlier developed a prototype of mealtime assistance simulation model. This simulation model had a tongue model with a sensor system to detect spoon motions, and its fundamental functions were evaluated via spoon detection experiments. Based on the earlier achievements, in this study, we develop an evaluation system of feeding skill using a spoon. The pressing force and position by spoon on the tongue model were estimated by transfer functions derived from experiments. In addition, we developed an algorithm that leads students’ spoon position and pressing force in the correct position.
Funder
Japan Society for the Promotion of Science
Publisher
Fuji Technology Press Ltd.
Subject
Electrical and Electronic Engineering,General Computer Science
Reference21 articles.
1. The Ministry of Health, Labour and Welfare Japan, “The report of review meeting on contents and method of nursing education,” February 28, 2011 (in Japanese).
2. T. Daigo, M. Muramatsu, and A. Mitani, “Development of the Second Prototype of an Oral Care Simulator,” J. Robot. Mechatron., Vol.33, No.1, pp. 172-179, 2021.
3. A. Mitani and M. Muramatsu, “Development of Human Tongue Model for Mealtime Assistant Training Using Oral Care Simulation Model,” Int. J. Automation Technol., Vol.13, No.4, pp. 499-505, 2019.
4. T. Hashimoto, Y. Takakura, T. Hamada, T. Akazawa, and M. Yamamoto, “Development of Foot Gait Simulator for Presenting Environment to Each User,” J. Adv. Comput. Intell. Intell. Inform., Vol.15, No.5, pp. 554-562, 2011.
5. K. Tokoro, T. Hashimoto, and H. Kobayashi, “Development of Robotic Defecation Simulator,” J. Robot. Mechatron., Vol.26, No.3, pp. 377-387, 2014.