Author:
Caremel Cedric, ,Ishige Matthew,Ta Tung D.,Kawahara Yoshihiro
Abstract
Conventional model theories are not suitable to control soft-bodied robots as deformable materials present rapidly changing behaviors. Neuromorphic electronics are now entering the field of robotics, demonstrating that a highly integrated device can mimic the fundamental properties of a sensory synaptic system, including learning and proprioception. This research work focuses on the physical implementation of a reservoir computing-based network to actuate a soft-bodied robot. More specifically, modeling the hysteresis of a shape memory alloy (SMA) using echo state networks (ESN) in real-world situations represents a novel approach to enable soft machines with task-learning. In this work, we show that not only does our ESN model enable our SMA-based robot with locomotion, but it also discovers a successful strategy to do so. Compared to standard control modeling, established either by theoretical frameworks or from experimental data, here, we gained knowledge a posteriori, guided by the physical interactions between the trained model and the controlled actuator, interactions from which striking patterns emerged, and informed us about what type of locomotion would work best for our robot.
Publisher
Fuji Technology Press Ltd.
Subject
Electrical and Electronic Engineering,General Computer Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Training Echo-State Networks for Big Data Prediction using Variation of Parameters;2022 16th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS);2022-10