Design and Practice of a Model-Based Development Education in Hydraulic Systems

Author:

Sako Mikiya,Wakitani Shin,Kozui Masatoshi,Yamamoto Toru,Yamashita Koji,Koiwai Kazushige,Yamazaki Yoichiro, ,

Abstract

This paper proposes educational simulation environment for the model-based development (MBD) of hydraulic systems. In recent years, customer requirements for different products have become more diversified and increasingly complicated. Thus, companies must respond to such demands promptly. Many companies are beginning to adopt an MBD as a solution to this problem because such an approach can reduce the development time and cost. However, most engineers in such companies lack experience with an MBD. Therefore, establishing a training environment that can allow them to learn the MBD process experientially within a short timeframe is an effective approach. Moreover, because hydraulic systems are mainly used in construction machines, this study focuses on educational materials for hydraulic systems through an MBD educational program jointly developed between Hiroshima University and Kobelco Construction Machinery Co., Ltd.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Reference17 articles.

1. A. Ohata and K. R. Butts, “Improving Model-based Design for Automotive Control Systems Development,” Proc. 17th IFAC World Congress 2008, Vol.41, No.2, pp. 1062-1065, 2008.

2. H. Ogata and T. Katayama, “Skill standards for model based development engineers in the automotive industry,” IFAC Proc. Volumes, Vol.42, No.24, pp. 240-244, 2009.

3. S. Wakitani and T. Yamamoto, “Design of an Educational Hardware in the Loop Simulator for Model-Based Development Education,” J. Robot. Mechatron., Vol.31, No.3, pp. 376-382, 2019.

4. A. Ohata, H. Ito, S. Gopalswamy, and K. Furuta, “Plant Modeling Environment Based on Conservation Laws and Projection Method for Automotive Control Systems,” SICE J. of Control, Measurement, and System Integration, Vol.1, Issue 3, pp. 227-234, 2008.

5. T. Nagano, M. Harakawa, M. Iwase, J. Ishikawa, and H. Koizumi, “Model Based Development Method for Servo Control System of Industrial Machine,” Trans. of the Japan Society for Simulation Technology, Vol.10, No.3, pp. 77-87, 2018.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design of a Hierarchical-Type Control System Based on Smart MBD Approach and its Application to Hydraulic Excavator;Journal of Robotics and Mechatronics;2024-08-20

2. Design and experimental evaluation of a data‐driven PID controller using cerebellar memory;IET Control Theory & Applications;2024-06-11

3. A Study of a Data-Driven Cyber-Physical Control System Using an Assessment Mechanism;2024 IEEE 7th International Conference on Industrial Cyber-Physical Systems (ICPS);2024-05-12

4. Design of a Database-Driven Model Error Compensator;Transactions of the Institute of Systems, Control and Information Engineers;2024-03-15

5. Application of a Database-Driven PID Controller Using a CMAC Memory in a Hydraulic System;IECON 2023- 49th Annual Conference of the IEEE Industrial Electronics Society;2023-10-16

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3