Author:
Xue Jingwei, ,Li Zehao,Fukuda Masahito,Takahashi Tomokazu,Suzuki Masato,Mae Yasushi,Arai Yasuhiko,Aoyagi Seiji
Abstract
Object detectors using deep learning are currently used in various situations, including robot demonstration experiments, owing to their high accuracy. However, there are some problems in the creation of training data, such as the fact that a lot of labor is required for human annotations, and the method of providing training data needs to be carefully considered because the recognition accuracy decreases due to environmental changes such as lighting. In the Nakanoshima Challenge, an autonomous mobile robot competition, it is challenging to detect three types of garbage with red labels. In this study, we developed a garbage detector by semi-automating the annotation process through detection of labels using colors and by preparing training data by changing the lighting conditions in three ways depending on the brightness. We evaluated the recognition accuracy on the university campus and addressed the challenge of using the discriminator in the competition. In this paper, we report these results.
Publisher
Fuji Technology Press Ltd.
Subject
Electrical and Electronic Engineering,General Computer Science
Reference22 articles.
1. J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, Real-Time Object Detection,” 2016 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2016.
2. D. Erhan, C. Szegedy, A. Toshev, and D. Anguelov, “Scalable object detection using deep neural networks,” 2014 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2014.
3. K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convolutional networks for visual recognition,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.37, Issue 9, pp. 1904-1916, 2015.
4. N. Chavali, H. Agrawal, A. Mahendru, and D. Batra, “Object-Proposal Evaluation Protocol is ‘Gameable’,” 2016 IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2016.
5. C. Szegedy, A. Toshev, and D. Erhan, “Deep neural networks for object detection,” Neural Information Processing Systems (NIPS), Vol.13, No.2, pp. 2553-2561, 2013.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献