CNN-Based Terrain Classification with Moisture Content Using RGB-IR Images

Author:

Goto Tomoya, ,Ishigami Genya

Abstract

Unmanned mobile robots in rough terrains are a key technology for achieving smart agriculture and smart construction. The mobility performance of robots highly depends on the moisture content of soil, and past few studies have focused on terrain classification using moisture content. In this study, we demonstrate a convolutional neural network-based terrain classification method using RGB-infrared (IR) images. The method first classifies soil types and then categorizes the moisture content of the terrain. A three-step image preprocessing for RGB-IR images is also integrated into the method that is applicable to an actual environment. An experimental study of the terrain classification confirmed that the proposed method achieved an accuracy of more than 99% in classifying the soil type. Furthermore, the classification accuracy of the moisture content was approximately 69% for pumice and 100% for dark soil. The proposed method can be useful for different scenarios, such as small-scale agriculture with mobile robots, smart agriculture for monitoring the moisture content, and earthworks in small areas.

Funder

Japan Society for the Promotion of Science

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Off-road terrain classification;Journal of Terramechanics;2023-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3