Application of Noncircular Pulleys to Straight-Fiber-Type Pneumatic Artificial Muscle Manipulator

Author:

Tanaka Riku1,Abe Teppei1,Tomori Hiroki1ORCID

Affiliation:

1. Department of Mechanical Systems Engineering, Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan

Abstract

This study proposes a method for improving the performance of a manipulator driven by pneumatic artificial muscles. Although the straight-fiber-type pneumatic artificial muscle (SF-PAM), a kind of pneumatic artificial muscle, is lightweight and exhibits high contractile force and contraction percentage, its contractile force decreases as contraction increases. To compensate for the decrease in the SF-PAM contractile force, we developed a noncircular pulley and integrated it into the manipulator driven by a wire pulley mechanism. Because this noncircular pulley is designed in accordance with the output characteristics of SF-PAM, the contraction force of SF-PAM can be converted into manipulator torque efficiently. In addition, the radius of the noncircular pulley is expressed as a function, which can be incorporated into a numerical model for the manipulator’s controller. Subsequently, simulation and experimentation to verify the proposed method showed that, when using the same actuator, the manipulator with a noncircular pulley can optimize both output torque and range of motion better than that with a conventional circular pulley. However, a few differences between simulation results and experimental results were observed. These differences were caused by SF-PAM stretching which was not considered in the model. This drawback can be overcome by improving the SF-PAM and the numerical model in future studies. We believe that this study will provide designers of robots that coexist with humans with a high degree of freedom.

Publisher

Fuji Technology Press Ltd.

Subject

Electrical and Electronic Engineering,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3