Evaluation of Swallowing Sound Using a Throat Microphone with an AE Sensor in Patients Wearing Palatal Augmentation Prosthesis

Author:

Kamiyanagi Ayuko, ,Sumita Yuka,Chikai Manabu,Kimura Kenta,Seki Yoshikazu,Ino Shuichi,Taniguchi Hisashi,

Abstract

An increase in the population of dysphagia patients due to an aging population has led to increased attention on examination methods based on swallowing sound as simple methods of screening aspiration. However, an issue with the conventional method of cervical auscultation is that its accuracy varies based on the examiner. Previous studies examined the use of throat microphones and acceleration sensors to examine the acoustic characteristics of swallowing sound. Nevertheless, extant studies to date did not reach a level of clinical application. This study focused on using a throat microphone that is conventionally used to measure swallowing sound and an AE sensor to measurement a high-frequency range equal to and exceeding 20 kHz (upper limit 2 MHz). The study involved measuring the sounds of swallowing water of healthy subjects and patients wearing palatal augmentation prosthesis who had done surgical operation to treat head and neck cancer with the objective of using swallowing sound for screening aspiration. Acoustic characteristics of measured swallowing sound were analyzed using probability distributions using Quantile-Quantile (Q-Q) plots and spectral analysis based on wavelet transform. The findings indicated that with respect to patients with PAP, the duration time of the swallowing sound and the Q-Q plot departure rate were both significantly higher when compared with those in healthy subjects. The analysis based on wavelet transform indicated that the AE sensor allowed measurements of waveforms at a higher frequency range when compared to those in the case of the throat microphone. Additionally, an increased frequency of higher-frequency signals was associated with patients with PAP when compared to healthy subjects. The results revealed that it is possible to measure waveforms in the high-frequency range by using the AE sensor. The findings suggested the validity of analysis of the swallowing sound based on probability distributions using the Q-Q plot to evaluate the swallowing sound.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3