Author:
Chen Lue-Feng, ,Liu Zhen-Tao,Wu Min,Dong Fangyan,Hirota Kaoru,
Abstract
A multi-robot behavior adaptation mechanism that adapts to human intention is proposed for human-robot interaction (HRI), where information-driven fuzzy friend-Q learning (IDFFQ) is used to generate an optimal behavior-selection policy, and intention is understood mainly based on human emotions. This mechanism aims to endow robots with human-oriented interaction capabilities to understand and adapt their behaviors to human intentions. It also decreases the response time (RT) of robots by embedding the human identification information such as religion for behavior selection, and increases the satisfaction of humans by considering their deep-level information, including intention and emotion, so as to make interactions run smoothly. Experiments is performed in a scenario of drinking at a bar. Results show that the learning steps of the proposal is 51 steps less than that of the fuzzy production rule based friend-Q learning (FPRFQ), and the robots’ RT is about 25% of the time consumed by FPRFQ. Additionally, emotion recognition and intention understanding achieved an accuracy of 80.36% and 85.71%, respectively. Moreover, a subjective evaluation of customers through a questionnaire obtains a reaction of “satisfied.” Based on these preliminary experiments, the proposal is being extended to service robots for behavior adaptation to customers’ intention to drink at a bar.
Publisher
Fuji Technology Press Ltd.
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献