Fused Architecture with Enhanced Bag of Visual Words for Efficient Drowsiness Detection

Author:

Vijayan Vineetha1ORCID,Pushpalatha K. P.1

Affiliation:

1. Mahatma Gandhi University, Priyadarsini Hills, Kottayam, Kerala 686560, India

Abstract

Drowsy driving is more hazardous than reckless driving. This study concentrates on capturing the behavioral features of drowsiness from facial images of a driver. The methodology considers scale invariant feature transform matched with the fast library for approximate nearest neighbors for low-level drowsy features extraction. These features are fused with the high-level features extracted from the convolutional layers of a convolutional neural network (CNN). The convolution operation incorporates a model parallelization technique to increase the efficiency of the training and improve the feature identification. Further classification is performed by considering the occurrences of visual words using the softmax layers of the CNN. In contrast to existing state-of-the-art models which require a few seconds to detect drowsiness, this model detects drowsiness in milliseconds. With the model parallelization approach, this model exhibits a high accuracy rate of 83.8% relative to normal CNNs.

Funder

Government of India

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3