Author:
Alfughi Zakiya, ,Rahnamayan Shahryar,Yilbas Bekir
Abstract
The configuration of solar farms, in which solar collectors are arranged in rows, is related to field and collector characteristics and solar radiation data. The main parameters considered during the optimization of solar farm designs include the number of collector rows, the center-to-center distance between collectors, collector inclination angles, and the rim angles. Solar collectors can be subjected to shading depending on the spacing between the collector rows, collector height and angle, row length, and latitude of the solar field. This study aims to optimize solar farm design by ensuring the farm receives the maximum incident solar energy and incurs the minimum deployment cost. The proposed mathematical model for photovoltaic panels is presented in detail. A multi-objective evolutionary algorithm, a non-dominated sorting genetic algorithm-II (NSGA-II), is used to achieve an optimum solar farm design that incorporates parabolic trough panels. The performances of the parabolic and flat panels are also compared, and the findings are discussed in detail. Based on the obtained results, we can verify that the parabolic PV model could generate more energy than the flat model. However, at the same cost, the flat PV model generated more energy than the parabolic model. There is a trade-off between the absolute values of the various objectives, and a solution can be selected based on the customer’s requirements and desires.
Publisher
Fuji Technology Press Ltd.
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction
Reference24 articles.
1. D. Sheen, “Born-Again Ziontist’ Revolutionizing Solar Energy Field,” 2011. http://www.haaretz.com/weekend/anglo-file/born-again-ziontist-revolutionizing-solar-energy-field-1.388639
2. D. Weinstock and J. Appelbaum, “Optimal Solar Field Design of Stationary Collectors,” ASME J. of Solar Energy Engineering, Vol.126, No.3, pp. 898-905, 2013.
3. F. Bourennani, R. Rizvi, and S. Rahnamayan, “Optimal Photovoltaic Solar Power Farm Design Using the Differential Evolution Algorithms,” Int. Conf. on Clean Energy (ICCI ’10), pp. 1-8, 2010.
4. M. Vasile and L. Summerer, “Multi-Objective Optimisation of Integrated Space-Based and Terrestrial Solar Energy Systems,” 61st Int. Astronautical Congress, IAC 2010, pp. 1-10, 2010.
5. V. Garg and M.N. Murty, “Simulated Evolution and Learning, EPIC: Efficient Integration of Partitional Clustering Algorithms for Classification,” K. Deb, A. Bhattacharya, N. Chakraborti, P. Chakroborty, S. Das, J. Dutta, S. Gupta, A. Jain, V. Aggarwal, J. Branke, S. Louis, and K. Tan (Eds.), Lecture Notes in Computer Science, Vol.6457, pp. 706-710, Springer Berlin Heidelberg, 2010.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献