Author:
Xie Jiang,Sun Taifeng,Zhang Jieyu,Zhang Wu, ,
Abstract
The performance of Support Vector Regression (SVR) depends heavily on its parameters, but some optimization methods based on Grid Search (GS) or evolutionary algorithms still have several issues that must be addressed. This paper proposes a new hybrid method (PSO-SS) that combines Particle Swarm Optimization (PSO) and Scatter Search (SS) to optimize the parameters of the SVR. In PSO-SS, to improve the search capability of PSO and reduce the likelihood of the PSO becoming trapped in the local optimum, the initial PSO population is generated by the diversification generation method and the improvement method of SS, and the velocity updating formula of PSO is improved by adding diversity information. On the StatLib and UCI datasets, our experiments show that the PSO-SS method is an effective parameter optimization method compared with other methods. In addition, an SVR model with its parameters optimized by PSO-SS (PSO-SS-SVR) is used to predict the grain size of aluminum alloys. The experimental results show that the PSO-SS-SVR method outperforms Back Propagation Neural Network (BPNN), PSO-SVR and the empirical model.
Publisher
Fuji Technology Press Ltd.
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献