Author:
Akikawa Motohiro, ,Yamamura Masayuki
Abstract
In recent years, many systems have been developed to embed deep learning in robots. Some use multimodal information to achieve higher accuracy. In this paper, we highlight three aspects of such systems: cost, robustness, and system optimization. First, because the optimization of large architectures using real environments is computationally expensive, developing such architectures is difficult. Second, in a real-world environment, noise, such as changes in lighting, is often contained in the input. Thus, the architecture should be robust against noise. Finally, it can be difficult to coordinate a system composed of individually optimized modules; thus, the system is better optimized as one architecture. To address these aspects, a simple and highly robust architecture, namely memorizing and associating converted multimodal signal architecture (MACMSA), is proposed in this study. Verification experiments are conducted, and the potential of the proposed architecture is discussed. The experimental results show that MACMSA diminishes the effects of noise and obtains substantially higher robustness than a simple autoencoder. MACMSA takes us one step closer to building robots that can truly interact with humans.
Publisher
Fuji Technology Press Ltd.
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction
Reference29 articles.
1. J. Mi and Y. Takahashi, “Humanoid robot motion modeling based on time-series data using kernel PCA and Gaussian process dynamical models,” J. Adv. Comput. Intell. Intell. Inform., Vol.22, No.6, pp. 965-977, 2018.
2. Y. Sakagami, R. Watanabe, C. Aoyama, S. Matsunaga, N. Higaki, and K. Fujimura, “The intelligent ASIMO: System overview and integration,” Proc. of the IEEE/RSJ Int. Conf. on Intelligent Robots and Systems, Vol.3, pp. 2478-2483, 2002.
3. F. Tanaka, K. Isshiki, F. Takahashi, M. Uekusa, R. Sei, and K. Hayashi, “Pepper learns together with children: Development of an educational application,” Proc. of the 2015 IEEE-RAS 15th Int. Conf. on Humanoid Robots (Humanoids), pp. 270-275, 2015.
4. G. A. Bekey, “Autonomous robots: From biological inspiration to implementation and control,” MIT Press, 2005.
5. N. Sünderhauf, O. Brock, W. Scheirer, R. Hadsell, D. Fox, J. Leitner, B. Upcroft, P. Abbeel, W. Burgard, M. Milford, and P. Corke, “The limits and potentials of deep learning for robotics,” Int. J. Rob. Res., Vol.37, Nos.4-5, pp. 405-420, 2018.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献