The Application of A-CNN in Crowd Counting of Scenic Spots

Author:

Luo Wanli, ,Wang Jialiang

Abstract

In places where people are concentrated, such as scenic spots, the statistical accuracy of existing crowd statistics algorithms is not enough. In order to solve this problem, a crowd counting algorithm based on adaptive convolution neural network (A-CNN) is proposed, which is based on video monitoring technology. The process of its pooling is dynamically adjusted according to different feature graphs. Then the pooled weights are adjusted adaptively according to the contents of each pooled domain. Therefore, CNN can extract more accurate features when processing different pooled domains under different iteration times, so as to achieve adaptive effect finally. The experimental results show that the proposed A-CNN algorithm has improved the recognition accuracy.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Reference13 articles.

1. V. A. Sindagi and V. M. Patel, “A survey of recent advances in CNN-based single image crowd counting and density estimation,” Pattern Recognition Letters, Vol.107, pp. 3-16, 2018.

2. N. Ahuja and S. Todorovic, “Extracting texels in 2.1D natural textures,” 2007 IEEE 11th Int. Conf. on Computer Vision (ICCV), pp. 1-8, 2007.

3. V. Rabaud and S. Belongie, “Counting crowded moving objects,” 2006 IEEE Computer Society Conf. on Computer Vision and Patern Recognition (CVPR’06), Vol.1, pp. 705-711, 2006.

4. H. Liu, R. Song, and B. Wang, “A surveillance video crowd counting algorithm based on convolutional neural network,” J. of Anhui University (Natural Science Edition), Vol.3, pp. 47-50, 2015.

5. X. Sun, P. Wu, and S. C. H. Hoi, “Face Detection using Deep Learning: An Improved Faster RCNN Approach,” Neurocomputing, Vol.299, pp. 42-50, 2018.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. VGG-16 Convolutional Neural Network-Oriented Detection of Filling Flow Status of Viscous Food;Journal of Advanced Computational Intelligence and Intelligent Informatics;2020-07-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3