Analyses of Compound Structures of Groups that Produce Intellectual Property

Author:

Inoue Hiroyasu,

Abstract

This paper focuses on collaborations between scientists and engineers and investigates their mutual benefits. More concretely, multi-layered networks separated into four scientific/technological areas are investigated. The areas are life sciences (Bio), nanotechnology/materials (Nano), information and telecommunications (IT), and environmental sciences (Env), and they are mentioned in the third science and technology basic plan issued by the Government of Japan. The networks were then analyzed by using p*models to find compound structures. Logistic regression analysis was conducted, and the compound structures were expressed by explanatory variables. In all four areas, joint authorship and joint application tend to overlap. A role interlocking structure is only found in Bio, and itmeans that a gatekeeper exists between scientific knowledge and technical knowledge. A transitivity structuremeans three-person groups emerge such that a central person publishes papers (or patents) with two other people, and the two other people publish the other outcomes, and patents (or papers). It is found that transitivity is generally not reversible. In Bio and Nano, there is no eminent difference in significance of the two different types of transitivity, but in IT and Env, segregations with a joint application expert and joint authorship support emerge more strongly than the other types of segregations.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Natural Language Generation System for Knowledge Acquisition Based on Patent Database;Journal of Advanced Computational Intelligence and Intelligent Informatics;2022-03-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3