Author:
Uehara Kiyohiko, ,Hirota Kaoru,
Abstract
An inference method is proposed, which can perform nonlinear mapping between convex fuzzy sets and present a scheme of various fuzzy-constraint propagation from given facts to deduced consequences. The basis of nonlinear mapping is provided by α-GEMII (α-level-set and generalized-mean-based inference) whereas the control of fuzzy-constraint propagation is based on the compositional rule of inference (CRI). The fuzzy-constraint propagation is controlled at the multi-level of α in its α-cut-based operations. The proposed method is named α-GEMS (α-level-set and generalized-mean-based inference in synergy with composition). Although α-GEMII can perform the nonlinear mapping according to a number of fuzzy rules in parallel, it has limitations in the control of fuzzy-constraint propagation and therefore has difficulty in constructing models of various given systems. In contrast, CRI-based inference can rather easily control fuzzy-constraint propagation with high understandability especially when a single fuzzy rule is used. It is difficult, however, to perform nonlinear mapping between convex fuzzy sets by using a number of fuzzy rules in parallel. α-GEMS can solve both of these problems. Simulation results show that α-GEMS is performed well in the nonlinear mapping and fuzzy-constraint propagation. α-GEMS is expected to be applied to modeling of given systems with various fuzzy input-output relations.
Publisher
Fuji Technology Press Ltd.
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction
Reference23 articles.
1. L. A. Zadeh, “Fuzzy logic = Computing with words,” IEEE Trans. Fuzzy Syst., Vol.4, No.2, pp. 103-111, 1996.
2. L. A. Zadeh, “Inference in fuzzy logic via generalized constraint propagation,” Proc. 1996 26th Int. Symposium on Multi-Valued Logic (ISMVL’96), pp. 192-195, 1996.
3. A. Kaufmann, “Introduction to the theory of fuzzy subsets,” New York: Academic, Vol.1, 1975.
4. N. R. Pal and J. C. Bezdek, “Measuring Fuzzy Uncertainty,” IEEE Trans. Fuzzy Syst., Vol.2, No.2, pp. 107-118, 1994.
5. R. R. Yager, “On the specificity of a possibility distribution,” Fuzzy Sets Syst., Vol.50, pp. 279-292, 1992.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献