Author:
Chen Shan-Tai, ,Wu Chien-Chen,Chen Wann-Jin,Hu Jen-Chi, ,
Abstract
Rain-area identification distinguishes between rainy and non-rainy areas, which is the first step in some critical real-world problems, such as rain intensity identification and rain-rate estimation. We develop a data mining approach for oceanic rain-area identification during typhoon season, using microwave data from the Tropical Rainfall Measuring Mission (TRMM) satellite. Three schemes tailored for the problem are developed, namely (1) association rule analysis for uncovering the set of potential attributes relevant to the problem, (2) three-phase outlier removal for cleaning data and (3) the neural committee classifier (NCC) for achieving more accurate results. We created classification models from 1998-2004 TRMM Microwave Imager (TRMM-TMI) satellite data and used Automatic Rainfall and Meteorological Telemetry System (ARMTS) rain gauge data measurements to evaluate the model. Experimental results show that our approach achieves high accuracy for the rain-area identification problem. The classification accuracy of our approach, 96%, outperforms the 78.6%, 77.3%, 83.3% obtained by the scattering index, threshold check, and rain flag methods, respectively.
Publisher
Fuji Technology Press Ltd.
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献