Author:
Yimit Adiljan, ,Hagihara Yoshihiro
Abstract
2D histogram-based thresholding methods, in which the histogram is computed from local image features, have better performance than 1D histogram-based methods, but they take much more computation time. In this paper, we present a Rényi entropic multilevel thresholding (REMT) method based on a 2D direction histogram constructed from pixel values and local directional features. In addition to presenting a fast recursive method for REMT, we propose the Rényi entropic artificial bee colony multilevel thresholding (REABCMT) method to quickly find the optimal threshold values. In order to demonstrate the efficacy of REABCMT, three versions of this method are compared in terms of computation time and optimal threshold values. In addition, the segmentation performance of REABCMT is also evaluated by comparing it with two other methods to show its effectiveness. Moreover, in order to evaluate the efficiency and stability of using the ABC algorithm in the search for threshold values, genetic algorithm (GA) and particle swarm optimization (PSO), two common optimization algorithms, are also compared with it.
Publisher
Fuji Technology Press Ltd.
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献