Evaluating Instantaneous Psychological Stress from Emotional Composition of a Facial Expression

Author:

Das Suvashis, ,Yamada Koichi

Abstract

Human psychological stress is a vast and highly complicated topic of study and research. The types and kinds of stress observed in humans vary among researchers. Also, to identify stress, many methods exist. Most of these methods are non-intrusive and are based on self-reporting and questionnaires which reduces the real-time efficacy of the procedure. Intrusive methods are, on the other hand, time consuming and cumbersome. The total problem of non-intrusive psychological stress detection from facial images can be visualized in three incremental stages: instantaneous analysis of subject, historical analysis of subject, and the subject’s environmental analysis. In this paper, we deal with instantaneous analysis of a subject. This means that the stress behavior of a subject is predicted for one moment of time using an image of his/her facial expression. In order to do so, we have conducted two surveys to establish the relationship between emotional compositions of a facial expression with stress and also to establish the relationship of individual emotions with stress. The novelty of the paper is 1) to establish relationships between the seven basic emotions (anger, contempt, disgust, fear, happy, sad, and surprise) and stress, 2) to establish relationship between emotional composition of a facial expression and stress, and 3) to predict a formula for evaluating stress in terms of emotional percentage mixture of a facial expression. In order to achieve the three goals, we use Facial Action Unit (AU) [1] coded image data to predict the emotional mixture of the facial expression in terms of the seven basic emotion percentages. An AU represents one of the many basic muscle movements that make up the facial expression. Then we analyze the survey outcomes to establish the relationship between individual emotions and stress. Finally we correlate the survey outcomes with the emotional mixture data obtained from the facial expression using Hidden Markov Model (HMM) approach to both establish a relationship of emotional composition with stress and to predict a formula for stress in terms of the seven basic emotion percentages jointly.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Reference35 articles.

1. P. Ekman and W. V. Friesen, “Facial Action Coding System: Investigator’s Guide,” Consulting Psychologists Press, 1978.

2. K. Dai, H. J. Fell, and J. MacAuslan, “Recognizing emotion in speech using neural networks,” Proc. of the IASTED Int. Conf. on Telehealth/Assistive Technologies, Ronald Merrell (Ed.), pp. 31-36, 2008.

3. L. R. Rabiner, “A tutorial on Hidden Markov Models and selected applications in speech recognition,” Proc. of the IEEE, Vol.77, No.2, pp. 257-286, 1989.

4. A. S. AlMejrad, “Human Emotions Detection using Brain Wave Signals: A Challenging,” European J. of Scientific Research, Vol.44, No.4, pp. 640-659, 2010.

5. F. H. Wilhelm, M. C. Pfaltz, and P. Grossman, “Continuous electronic data capture of physiology, behavior and experience in real life: towards ecological momentary assessment of emotion,” Interacting with Computers, Vol.18, Iss. 2, pp. 171-186, 2006.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3