A Pareto Optimal Solution Visualization Method Using an Improved Growing Hierarchical Self-Organizing Maps Based on the Batch Learning

Author:

Suzuki Naoto, ,Okamoto Takashi,Koakutsu Seiichi

Abstract

In the multi-objective optimization problem that appears naturally in the decision making process for the complex system, the visualization of the innumerable solutions called Pareto optimal solutions is an important issue. This paper focuses on the Pareto optimal solution visualization method using the growing hierarchical self-organizing maps (GHSOM) which is one of promising visualization methods. This method has a superior Pareto optimal solution representation capability, compared to the visualization method using the self-organizing maps. However, this method has some shortcomings. This paper proposes a new Pareto optimal solution visualization method using an improved GHSOM based on the batch learning. In the proposed method, the batch learning algorithm is introduced to the GHSOM to obtain a consistent visualization maps for a Pareto optimal solution set. Then, the symmetric transformation of maps is introduced in the growing process in the batch learning GHSOM algorithm to improve readability of the maps. Furthermore, the learning parameter optimization is introduced. The effectiveness of the proposed method is confirmed through numerical experiments with comparing the proposed method to the conventional methods on the Pareto optimal solution representation capability and the readability of the visualization maps.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3