Author:
Wei Qingxuan, ,Li Xueting
Abstract
The accurate identification and characterization of the accelerometer dynamic model parameters play an important role in improving the dynamic performance of the device or system with an accelerometer. To overcome the problem that the traditional single degree of freedom (SDF) dynamic model of the accelerometer cannot describe the dynamic characteristics beyond the first resonant frequency of the accelerometer, a two degree of freedom (TDF) dynamic model of the accelerometer was constructed. On this basis, a parameter identification method for the TDF dynamic model of the accelerometer based on the feature points coordinate estimation and amplitude correction was proposed. First, the zero frequency point coordinates of the accelerometer frequency response were obtained by the Hv method. The first and second resonance point coordinates were estimated by discrete spectrum correction and the least square (DSC-LS) method. Then, the amplitude correction coefficient was applied to eliminate the influence of series coupling on the amplitude. Finally, the TDF dynamic model parameters of the accelerometer were calculated through the feature point coordinates. The experimental results show that the method has high accuracy and can avoid the influence of series coupling on the parameter identification accuracy of the accelerometer’s TDF dynamic model without complex derivation and decoupling operations. The identified TDF dynamic model of the accelerometer can represent the dynamic characteristics with a higher frequency range.
Funder
Beijing Institute of Petrochemical Technology
Publisher
Fuji Technology Press Ltd.
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction