An Evolutionary Hybrid Scheduling Algorithm for Computational Grids

Author:

Benedict Shajulin, ,S Rejitha R.,Vasudevan V.,

Abstract

Grids promote user collaboration through flexible, coordinated sharing of distributed resources to solve a single large problem. Grid scheduling, similar to resource discovery and monitoring, is inherently more complex in Grid environments. We propose two approaches for solving Grid scheduling problems with the simultaneous objectives of maximizing the number of workflow executions and minimizing the waiting time variance among tasks of each workflow. One is the multiple objective Niched Pareto Genetic Algorithm (NPGA) that involves evolution during a comprehensive search and work on multiple solutions. After the Genetic search, we strengthen the search using Simulated Annealing as a local search meta-heuristic. For comparison, we evaluate other scheduling, such as, Tabu Search (TS), Simulated annealing (SA), and Discrete Particle Swarm Optimization (Discrete PSO). Results show that our proposed evolutionary Hybrid scheduling involving NPGA with an SA search, works better than other scheduling in considering workflow execution time within a deadline and waiting time variance in tasks with minimal iterations.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gradient-Based Scheduler for Scientific Workflows in Cloud Computing;Journal of Advanced Computational Intelligence and Intelligent Informatics;2023-01-20

2. CatBoost and Genetic Algorithm Implementations for University Recommendation Systems;2022 International Conference on Inventive Computation Technologies (ICICT);2022-07-20

3. An ACO Approach to Job Scheduling in Grid Environment;Swarm, Evolutionary, and Memetic Computing;2010

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3