Author:
Tsuboi Yusei, ,Ibrahim Zuwairie,Ono Osamu
Abstract
We propose a new DNA-based semantic model, constructed of DNA molecules, called asemantic model based on molecular computing(SMC). It is structured as a graph formed by the set of all (attribute, attribute value) pairs contained in the set of represented objects, plus a tag node for each object. Each path in the network, from an initial object-representing tag node to the terminal node, represents the object named on the tag. Inputting a set of input strands the forms object-representing dsDNAs via parallel self-assembly from encoded ssDNAs representing both attributes and attribute values (nodes), as directed by ssDNA splitting strands representing relations (edges) in the network. The success of experiments in constructing a small test model demonstrates that our proposed model suitably represents knowledge to storing vast amounts of information at high density.
Publisher
Fuji Technology Press Ltd.
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction
Reference22 articles.
1. A. Marathe, A. E. Condon, and R. M. Corn, “On combinatorial DNA word design,” J. Comp. Biol., Vol.8, pp. 201-219, 2001.
2. D. Faulhammer, A. R. Cukras, R. J. Lipton, and L. F. Landweber, “Molecular Computation: RNA solutions to chess problems,” Proc. Nat1, Acad. Sci. USA., Vol.98, pp. 1385-1389, 2000.
3. E. B. Baum, “How to build an associative memory vastly larger than the brain,” Science, Vol.268, pp. 583-585, 1995.
4. F. Udo, S. Sam, B. Wolfgang, and R. Hilmar, “DNA sequence generator: A program for the construction of DNA sequences,” In N. Jonoska and N. C. Seeman (editors), Proc. of the Seventh International Workshop on DNA Based Computers, pp. 21-32, 2001.
5. G. Frutos, Q. Liu, A. J. Thiel, A. M. W. Sanner, A. E. Condon, L. M. Smith, and R. M. Corn, “Demonstration of a word design strategy for DNA computing on surfaces,” Nucl. Acids Res., Vol.25, pp. 4748-4757, 1997.