A Hybrid Neuro-Symbolic Approach for Arabic Handwritten Word Recognition

Author:

Souici-Meslati Labiba, ,Sellami Mokhtar

Abstract

In this article, we suggest a system that automatically constructs knowledge based artificial neural networks (KBANN) for the holistic recognition of handwritten Arabic words in limited lexicons. To build a neuro-symbolic KBANN classifier for a given vocabulary, ideal samples of its words are first submitted to a structural feature extraction module. The analysis of the presence and possible occurrence numbers for these features in the considered lexicon enables to generate a symbolic knowledge base reflecting a hierarchical classification of the words. A rules-to-network translation algorithm uses this knowledge to build a multilayer neural network. It determines precisely its architecture and initializes its connections with specific values rather than random values, as is the case in classical neural networks. This construction approach provides the network with theoretical knowledge and reduces the training stage, which remains necessary because of styles and writing conditions variability. After this empirical training stage using real examples, the network acquires a final topology, which allows it to recognize new handwritten words. The proposed method has been tested on the automated construction of neuro-symbolic classifiers for two Arabic lexicons: literal amounts and city names. The application of this approach to the recognition of handwritten words or characters in different scripts and languages is also considered.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Granular Framework for Recognition of Arabic Handwriting;Journal of Advanced Computational Intelligence and Intelligent Informatics;2009-09-20

2. Semi-continuous HMMs with explicit state duration for unconstrained Arabic word modeling and recognition;Pattern Recognition Letters;2008-09

3. Visual Recognition of Arabic Handwriting: Challenges and New Directions;Arabic and Chinese Handwriting Recognition

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3