Improving GNSS Navigation and Control with Electronic Compass in Unmanned System

Author:

Han Xi,Zhang Xiaolin,Liu Yuansheng, , ,

Abstract

This paper proposes a compensation technique for the global navigation satellite system (GNSS)/real-time kinematic (RTK) course angle data using an electronic compass for an unmanned system. Additionally, the proportion, integral, and derivative control based on a back-propagation neural network (BP-PID) is introduced to improve the steering safety and riding comfort. The course angle jitter was determined. Because the GNSS/RTK receiver cannot offer stable heading data under specific conditions, including but not limited to susceptibility to obstacles, complex electromagnetic environment, and fewer satellites. The compensation algorithm is based on the determination of the GNSS course angle variance ratio and the asynchronous characteristic between the GNSS and an electronic compass. The combined data provide accurate and robust navigation information for an outdoor unmanned system. To address the limitation of the in-system parameter adjustment, a back-propagation (BP) neural network is adhibited to a conventional proportion, integral, and derivative (PID) lateral control system. The BP-PID control module updates the incremental PID parameters through self-learning, and results in the smoother operation of the vehicle. The flowchart of the learning algorithm and method of calculating the parameters are presented. A typical measurement was conducted and the obtained results were compared with typical RTK navigation results. Thus, the effectiveness of the proposed compensation method was confirmed.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Reference19 articles.

1. D.-J. Wang, G.-C. Wang, and J. Wu, “Fixed-interval smoothing post-processing algorithm for low-cost MEMS-based integrated navigation system,” J. of Chinese Inertial Technology, Vol.25, No.1, pp. 97-102, 2017 (in Chinese).

2. A. G. Quinchia, G. Falco, E. Falletti, F. Dovis, and C. Ferrer, “A Comparison between Different Error Modeling of MEMS Applied to GPS/INS Integrated Systems,” Sensors, Vol.13, Issue 8, pp. 9549-9588, 2013.

3. Y. Zhang and D. P. Hong, “Navigation of Mobile Robot Using Low-cost GPS,” Int. J. of Precision Engineering and Manufacturing, Vol.16, Issue 4, pp. 847-850, 2015.

4. S. Liu, F.-P. Sun, H.-F. Li, and L.-D. Zhang, “Forward-backward-smoothing algorithm with application to tightly coupled PPP/INS data post-processing,” J. of Chinese Inertial Technology, Vol.23, No.1, pp. 85-91, 2015 (in Chinese).

5. E.-H. Shin, “Estimation techniques for low-cost inertial navigation,” Ph.D. thesis, Department of Geomatics Engineering, University of Calgary, 2005.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3