Crystalizing Effect of Simulated Annealing on Boltzmann Machine

Author:

Shibata Hiroki, ,Ishikawa Hiroshi,Takama Yasufumi

Abstract

This paper proposes a method to estimate the posterior distribution of a Boltzmann machine. Due to high feature extraction ability, a Boltzmann machine is often used for both of supervised and unsupervised learning. It is expected to be suitable for multimodal data because of its bi-directional connection property. However, it needs a sampling method to estimate the posterior distribution, which becomes a problem during an inference period because of the computation time and instability. Therefore, it is usually converted to feedforward neural networks, which means to lose its bi-directional property. To deal with these problems, this paper proposes a method to estimate the posterior distribution of a Boltzmann machine fast and stably without converting it to feedforward neural networks. The key idea of the proposed method is to estimate the posterior distribution using a simulated annealing on non-uniform temperature distribution. The advantage of the proposed method against Gibbs sampling and conventional simulated annealing is shown through experiments with artificial dataset and MNIST. Furthermore, this paper also gives the mathematical analysis of Boltzmann machine’s behaviour with regard to temperature distribution.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Application of Exchanging Monte Carlo Method to Sample Deep Boltzmann Machines;2020 International Conference on Technologies and Applications of Artificial Intelligence (TAAI);2020-12

2. Improvements on Probability Model for Sightseeing Route Recommendation Method Employing Generalized Formulation in terms of Edges;2019 International Conference on Technologies and Applications of Artificial Intelligence (TAAI);2019-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3