Design and Implementation of a Recommendation System for Buying Fresh Foods Online Based on Web Crawling

Author:

Ou Tsung-Yin1ORCID,Lee Yi-Chen2ORCID,Chang Tien-Hsiang3ORCID,Lee Shih-Hsiung3ORCID,Tsai Wen-Lung4ORCID

Affiliation:

1. Department of Marketing and Distribution Management, National Kaohsiung University of Science and Technology, No.1 University Road, Yanchao District, Kaohsiung 824005, Taiwan

2. Department of Seafood Science, National Kaohsiung University of Science and Technology, No.142 Haijhuan Road, Nanzih District, Kaohsiung 81157, Taiwan

3. Department of Intelligent Commerce, National Kaohsiung University of Science and Technology, No.58 Shenzhong Road, Yanchao District, Kaohsiung 824004, Taiwan

4. Department of Information Management, Asia Eastern University of Science and Technology, No.58, Section 2, Sihchuan Road, Banqiao District, New Taipei 220303, Taiwan

Abstract

As shopping patterns have gradually shifted from offline to online mode, and with recent lockdowns during the coronavirus disease 2019 (COVID-19) pandemic restricting foreign trade and accelerating the growth of the domestic economy, digital transformation has become a major strategy for many retailers to support and expand their businesses. With the pandemic becoming a turning point, the business of major e-commerce companies in Taiwan in the retail of dry goods has grown significantly, and it has driven the online sales of fresh products as well. In this era of fierce competition, it is especially important to find a way that enables consumers to quickly find ideal fresh products on multiple platforms, shortens the time for price comparison, and improves the efficiency of online shopping. This study uses the Python programming language to write a web crawler program that captures product information from fresh food e-commerce platforms, including product introduction, price, origin, and sales volume, and then defines the relevant status of the product, such as product popularity. Accordingly, through Chinese text segmentation and term-frequency calculation, it aims to classify the product names and introductions into frequently occurring words and use them as product-related labels. Finally, the program combines the product information processing results and product-related labels to construct an online fresh food recommendation system. The results of the proposed system show that it reduces the time and energy spent comparing prices. It can also guide consumers to browse products that may be of interest using relevant tags and increase consumption efficiency by helping them find the ideal item when shopping.

Funder

Marine Characteristic Cross-Campus Research Project

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Study on Design, Development and Deployment of Web Crawler Algorithms and Their Metrics;2024 International Conference on Advances in Data Engineering and Intelligent Computing Systems (ADICS);2024-04-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3