Combination of Two Evolutionary Methods for Mining Association Rules in Large and Dense Databases

Author:

Gonzales Eloy, ,Taboada Karla,Mabu Shingo,Shimada Kaoru,Hirasawa Kotaro,

Abstract

Among several methods of extracting association rules that have been reported, a new evolutionary method named Genetic Network Programming (GNP) has also shown its effectiveness for small databases in the sense that they have a relatively small number of attributes. However, this conventional GNP method is not be able to deal with large databases with a huge number of attributes, because its search space becomes very large, causing bad performance at running time. The aim of this paper is to propose a new method to extract association rules from large and dense databases with a huge amount of attributes through the combination of conventional GNP based mining method and a specially designed genetic algorithm (GA). Each of these evolutionary methods works in its own processing level and they are highly synchronized to act as one system.Our strategy consists in the division of a large and dense database into many small databases. These small databases are considered as individuals and form a population. Then the conventional GNP based mining method is applied to extract association rules for each of these individuals. Finally, the population is evolved through several generations using GA with special genetic operators considering the acquired information. Two complementary processing levels are defined: Global Level and Local Level, each with its own independent tasks and processes. In the Global Level mainly GA process is carried out, whereas in the Local Level, conventional GNP based mining method is carried out in parallel and they generate their own local pools of association rules. Several special genetic operations for GA in the Global Level are proposed and the performance of each of them and their combination is shown and compared.In our simulations, the conventional GNP based mining method and our proposed method are compared using a real world large and dense database with a huge amount of attributes. The results show that extending the conventional GNP based mining method using GA allows to extract association rules from large and dense databases directly and more efficiently than the conventional GNP method.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3