Approach to Hybrid Flow-Shop Scheduling Problem Based on Self-Guided Genetic Algorithm

Author:

Dai Wen-Zhan, ,Xia Kai

Abstract

The effective self-guided genetic algorithm (SGGA) which we proposed is based on the characteristics of a hybrid flow shop scheduling problem. A univariate probability model based on workpiece permutation is introduced together with a bivariate probability model based on a similar workpiece blocks. An approach to updating a probability model parameters is given based on superior individuals. A novel probability calculation function is proposed taking advantages of statistical learning information provided by univariate and bivariate probabilistic model to calculate the probability of workpieces located in different positions. A method for evaluating the quality of individual candidates generated by GA crossover and mutation operators is suggested for selecting promising and excellent individual candidates as offspring. Simulation results show that the SGGA has excellent performance and robustness.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimization of Orthogonal MSK Waveforms for Active Sonar Using Genetic Algorithm;Journal of Advanced Computational Intelligence and Intelligent Informatics;2019-01-20

2. A Review of Recent Developments in Advanced Computational Intelligence and Intelligent Informatics;Journal of Advanced Computational Intelligence and Intelligent Informatics;2016-07-19

3. Generating Trading Rules for Stock Markets Using Robust Genetic Network Programming and Portfolio Beta;Journal of Advanced Computational Intelligence and Intelligent Informatics;2016-05-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3