Fully Automated Determination of Femoral Coordinate System in CT Image Based on Epicondyles

Author:

Uozumi Yosuke, ,Nagamune Kouki,Nakano Naoki,Nagai Kanto,Araki Daisuke,Hoshino Yuichi,Matsushita Takehiko,Kuroda Ryosuke,Kurosaka Masahiro, ,

Abstract

We propose a fully automated determination of the femoral coordinates in computerized tomography (CT) imaging based on epicondyles. The challenge point of this paper is that we take up how to calculate the femoral coordinate system (FCS), which is difficult to determine automatically. Our proposed method automatically determines the FCS based on anatomical reference points. We evaluated 10 subjects (six men and four women 28.9 ± 9.3 years old, three left-handed and seven right-handed) who had no history of joint injury. We examined the proposed method by comparing the expert and algorithm. The medial epicondyle was 1.41 ± 0.75 mmp= 0.42 > 0.05, student’sttest) in positioning accuracy. The lateral epicondyle was 1.36 ± 0.70 mmp= 0.42) in positioning accuracy. The origin was 0.87 ± 0.40 mmp= 0.71). in positioning accuracy. The lateral axis angle accuracy was 0.53 ± 0.84°p= 0.44). In short, the proposed method constructed patient-specific coordinate systems more accurately than expert manual.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Reference14 articles.

1.  E. S. Grood and W. J. Suntay, “A joint coordinate system for the clinical description of three-dimensional motions: application to the knee,” J. of biomechanical engineering, Vol.105, No.2, pp. 136-144, 1983.

2.  S. Wei, K. McQuade, and G. Smidt, “Three-dimensional joint range of motion measurements from skeletal coordinate data,” The J. of Orthopaedic and Sports Physical Therapy, Vol.18, No.6, pp. 687, 1993.

3.  N. Baka, B. L. Kaptein, J. E. Giphart, M. Staring, M. d. Bruijne, B. P. Lelieveldt, and E. Valstar, “Evaluation of automated statistical shape model based knee kinematics from biplane fluoroscopy,” J. of Biomechanics, Vol.47, No.1, pp. 122-129, 2014.

4.  N. Baka, M. d. Bruijne, T. v. Walsum, B. Kaptein, J. Giphart, M. Schaap, W. J. Niessen, and B. P. Lelieveldt, “Statistical Shape Model-Based Femur Kinematics From Biplane Fluoroscopy,” IEEE Trans. on Medical Imaging, Vol.31, No.8, pp. 1573-1583, 2012.

5.  N. Hagemeister, G. Parent, M. V. d. Putte, N. St-Onge, N. Duval, and J. d. Guise, “A reproducible method for studying three dimensional knee kinematics,” J. of Biomechanics, Vol.38, No.9, pp. 1926-1931, 2005.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Review of Recent Developments in Advanced Computational Intelligence and Intelligent Informatics;Journal of Advanced Computational Intelligence and Intelligent Informatics;2016-07-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3