Simulated Analysis of Modeling of Driving Behavior Characteristics Based on Satellite Positioning Data
-
Published:2019-01-20
Issue:1
Volume:23
Page:114-118
-
ISSN:1883-8014
-
Container-title:Journal of Advanced Computational Intelligence and Intelligent Informatics
-
language:en
-
Short-container-title:JACIII
Author:
Xie Pei,Deng Lei, ,
Abstract
To promote the road transportation security, it’s necessary to study the modeling method of driving behavior characteristics. The traffic flow model realized by current modeling methods of driving behavior characteristics has a low accuracy in warning results. Therefore, based on satellite positioning data, a modeling method of driving behavior characteristics is proposed in this paper. Firstly, the dynamic model and kinetic model of traffic flow are built through the flow, speed and density parameters; then the response time, minimum safe distance and stability parameters of driving behavior are taken as the identification index of driving behavior to identify the driving behavior of drivers; according to the identification results, the psychological field theory and satellite positioning data are combined to build the model of driving behavior characteristics, and finally, warning the drivers according to their psychology and the actual situation of road. Experimental results demonstrate that the proposed method can accurately measure the traffic flow and speed, and the score of drivers’ behavior obtained has high accuracy, which verified again the high accuracy of traffic flow model and warning results of the proposed method.
Publisher
Fuji Technology Press Ltd.
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction
Reference14 articles.
1. L. Li, S. You, C. Yang, B. Yan, J. Song, and Z. Chen, “Driving-behavior-aware stochastic model predictive control for plug-in hybrid electric buses,” Applied Energy, Vol.162, No.1, pp. 868-879, 2016. 2. Z. Q. Li and Z. C. Yang, “Optimal Control with Dual Adaptation for the Braking Process of EMU Automatic Operation,” Computer Simulation, Vol.36, No.6, pp. 121-126, 2016. 3. Y. Ge, Q. Zhang, W. Zhao, K. Zhang, and W. Qu, “Effects of trait anger, driving anger, and driving experience on dangerous driving behavior: A moderated mediation analysis,” Aggressive Behavior, Vol.43, No.6, pp. 544-552, 2017. 4. G. Yang, X. Deng, and C. Liu, “Facial expression recognition model based on deep spatiotemporal convolutional neural networks,” J. of Central South University (Science and Technology), Vol.47, No.7, pp. 2311-2319, 2016. 5. D. L. Schall and A. Mohnen, “Incentivizing energy-efficient behavior at work: An empirical investigation using a natural field experiment on eco-driving,” Applied Energy, Vol.185, Part 2, pp. 1757-1768, 2017.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|