Novel Concepts on Domination in Neutrosophic Incidence Graphs with Some Applications

Author:

Mohamad Siti Nurul Fitriah12,Hasni Roslan2ORCID,Smarandache Florentin3ORCID

Affiliation:

1. College of Computing, Informatics and Mathematics, Universiti Teknologi MARA, Machang, Kelantan 18500, Malaysia

2. Special Interest Group on Modeling and Data Analytics, Faculty of Ocean Engineering Technology and Informatics, Universiti Malaysia Terengganu, Kuala Nerus, Terengganu 21030, Malaysia

3. Mathematics & Science Department, The University of New Mexico, 705 Gurley Avenue, Gallup, New Mexico 87301, USA

Abstract

In graph theory, the concept of domination is essential in a variety of domains. It has broad applications in diverse fields such as coding theory, computer network models, and school bus routing and facility location problems. If a fuzzy graph fails to obtain acceptable results, neutrosophic sets and neutrosophic graphs can be used to model uncertainty correlated with indeterminate and inconsistent information in arbitrary real-world scenario. In this study, we consider the concept of domination as it relates to single-valued neutrosophic incidence graphs (SVNIGs). Given the importance of domination and its utilization in numerous fields, we propose the application of dominating sets in SVNIG with valid edges. We present some relevant definitions such as those of valid edges, cardinality, and isolated vertices in SVNIG along with some examples. Furthermore, we also show a few significant sets connected to the dominating set in an SVNIG such as independent and irredundant sets. We also investigate a relationship between the concepts of dominating sets and domination numbers as well as irredundant and independence sets in SVNIGs. Finally, a real-life deployment of domination in SVNIGs is investigated in relation to COVID-19 vaccination locations as a practical application.

Funder

Universiti Teknologi MARA Kelantan

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3