Human Posture Recognition for Estimation of Human Body Condition
-
Published:2019-05-20
Issue:3
Volume:23
Page:519-527
-
ISSN:1883-8014
-
Container-title:Journal of Advanced Computational Intelligence and Intelligent Informatics
-
language:en
-
Short-container-title:JACIII
Author:
Quan Wei,Woo Jinseok,Toda Yuichiro,Kubota Naoyuki, ,
Abstract
Human posture recognition has been a popular research topic since the development of the referent fields of human-robot interaction, and simulation operation. Most of these methods are based on supervised learning, and a large amount of training information is required to conduct an ideal assessment. In this study, we propose a solution to this by applying a number of unsupervised learning algorithms based on the forward kinematics model of the human skeleton. Next, we optimize the proposed method by integrating particle swarm optimization (PSO) for optimization. The advantage of the proposed method is no pre-training data is that required for human posture generation and recognition. We validate the method by conducting a series of experiments with human subjects.
Publisher
Fuji Technology Press Ltd.
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction
Reference22 articles.
1. Y. Tang, H. Vu, P. Le, D. Masano, O. Thet, C. Fatichah, Z. Liu, M. Yamaguchi, M. Tangel, F. Dong, Y. Yamazaki, and K. Hirota, “Multimodal Gesture Recognition for Mascot Robot System Based on Choquet Integral Using Camera and 3D Accelerometers Fusion,” J. Adv. Comput. Intell. Intell. Inform., Vol.15, No.5, pp. 563-572, 2011. 2. J. J. Cabibihan, W.-C. So, and S. Pramanik, “Human-recognizable robotic gestures,” IEEE Trans. on Autonomous Mental Development, Vol.4, Issue 4, pp. 305-314, 2012. 3. T. Fong, I. Nourbakhsh, and K. Dautenhahn, “A survey of socially interactive robots,” Robotics and Autonomous Systems, Vol.42, No.3-4, pp. 143-166, 2003. 4. Y. Takahashi, K. Yoshida, F. Hibino, and Y. Maeda, “Human Pointing Navigation Interface for Mobile Robot with Spherical Vision System,” J. Adv. Comput. Intell. Intell. Inform., Vol.15, No.7, pp. 869-877, 2011. 5. E. E. Stone and M. Skubic, “Fall detection in homes of older adults using the microsoft kinect,” IEEE J. of Biomedical and Health Informatics, Vol.19, Issue 1, pp. 290-301, 2014.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|