Automatic Classification of Sleep-Wake States of Newborns Using Only Body and Face Videos

Author:

Ito Yuki1,Morita Kento1ORCID,Matsumoto Asami2,Shinkoda Harumi3,Wakabayashi Tetsushi1

Affiliation:

1. Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan

2. Suzuka University of Medical Science, 3500-3 Minamitamagaki, Suzuka, Mie 513-8670, Japan

3. Fukuoka Jo Gakuin Nursing University, 1-1-7 Chidori, Koga, Fukuoka 811-3113, Japan

Abstract

The premature newborn receives specialized medical care in the neonatal intensive care unit (NICU), where various medical devices emit excessive light and sound stimulation, and those prolonged exposures to stimuli may cause stress and hinder the development of the newborn’s nervous system. The formation of their biological clock or circadian rhythm, influenced by light and sound, is crucial for establishing sleep patterns. Therefore, it is essential to investigate how the NICU environment affects a newborn’s sleep quality and rhythms. Brazelton’s classification criteria measure the sleep-wake state of newborns, but the visual classification is time-consuming. Therefore, we propose a method to reduce the burden by automatically classifying the sleep-wake state of newborns from video images. We focused on videos of whole-body and face-only videos of newborns and classified them into five states according to Brazelton’s classification criteria. In this paper, we propose and compare methods of classifying whole-body and face-only videos separately using a three-dimensional convolutional neural network (3D CNN) and combining the two results obtained from whole-body and face-only videos with time-series smoothing. Experiments using 16 videos of 8 newborn subjects showed that the highest accuracy of 0.611 and kappa score of 0.623 were achieved by weighting the time-series smoothed results from whole-body and face-only videos by the output probabilities from the 3D CNN. This result indicated that the time-series smoothing and combining the results based on probabilities is effective.

Funder

Japan Society for the Promotion of Science

Publisher

Fuji Technology Press Ltd.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3