Landmark FN-DBSCAN: An Efficient Density-Based Clustering Algorithm with Fuzzy Neighborhood

Author:

Liu Hao, ,Oyama Satoshi,Kurihara Masahito,Sato Haruhiko

Abstract

Clustering is an important tool for data analysis and many clustering techniques have been proposed over the past years. Among them are density-based clustering methods, which have several benefits such as the number of clusters is not required before carrying out clustering; the detected clusters can be represented in an arbitrary shape and outliers can be detected and removed. Recently, the density-based algorithms were extended with the fuzzy set theory, which has made these algorithm more robust. However, the density-based clustering algorithms usually require a time complexity ofO(n2) wherenis the number of data in the data set, implying that they are not suitable to work with large scale data sets. In this paper, a novel clustering algorithm called landmark fuzzy neighborhood DBSCAN (landmark FN-DBSCAN) is proposed. The concept, landmark, is used to represent a subset of the input data set which makes the algorithm efficient on large scale data sets. We give a theoretical analysis on time complexity and space complexity, which shows both of them are linear to the size of the data set. The experiments show that the landmark FN-DBSCAN is much faster than FN-DBSCAN and provides a very good quality of clustering.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3