A Study of Double-Deck Elevator Systems Using Genetic Network Programming with Reinforcement Learning

Author:

Zhou Jin, ,Yu Lu,Mabu Shingo,Shimada Kaoru,Hirasawa Kotaro,Markon Sandor,

Abstract

In order to increase the transportation capability of elevator group systems in high-rise buildings without adding elevator installation space, double-deck elevator systems (DDES) is developed as one of the next generation elevator group control systems. Artificial intelligence (AI) technologies have been employed to find some efficient solutions in the elevator group control systems during the late 20th century. Genetic Network Programming (GNP), a new evolutionary computation method, has been employed as the elevator group control system controller in some studies of recent years. Moreover, reinforcement learning (RL) has been also found to be useful for more improvements of elevator group control performances when it is combined with GNP. In this paper, we proposed a new approach of DDES using GNP with RL, and did some experiments on a simulated elevator group control system of a typical office building to evaluate its applicability and efficiency. Simulation results show that the DDES using GNP with RL performs better than the one without RL in regular and down-peak time, while both of them outperforms a conventional approach and a heuristic approach in all three traffic patterns.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Reference9 articles.

1. J. Sorsa and M-.L. Siikonen, “Double-deck destination control system,” in Elevator World, pp. 318-327, 2006.

2. X. Bi, C. Zhu, and Q. Ye, “A GA-Based Approach to the Multi-Objective Optimization Problem in Elevator Group Control System,” in Elevator World, pp. 58-63, June 2004.

3. C. Kim, K. Seong, H. Lee-Kwang, and J. O. Kim, “Design and Implementation of a Fuzzy Elevator Group Control System,” IEEE Trans. on System, Man and Cybernetics, PART-A, Vol.28, No.3, pp. 277-287, 1998.

4. H. Wan, C. Liu, and H. Liu, “NN Elevator Group-Control Method,” in Elevator World, pp. 149-154, February 2003.

5. K. Hirasawa, T. Eguchi, J. Zhou, L. Yu, J. Hu, and S. Markon, “A Double-deck Elevator Group Supervisory Control System using Genetic Network Programming,” IEEE Transactions on Systems, Man, and Cybernetics, PART-C, Vol.38, No.4, pp. 535-550, 2008/7.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3