Author:
Tian Zhongda, ,Gao Xianwen,Guo Peiqin,
Abstract
A teleoperation robot system is connected through a network. However, stochastic delay in such a network can affect its performance, or even make the system unstable. To solve this problem, this paper proposes a teleoperation robot system control method based on fuzzy sliding mode. In the proposed method, a delay generator generates variable delay conforming to a shift gamma distribution designed to simulate actual network delay. In addition, a proposed fuzzy sliding mode controller based on switching gain adjustment is used to rectify the chattering phenomenon in the sliding mode controller of the teleoperation robot system. In the controller, the master hand uses impedance control and realizes feedback from the slave hand. Controller simulation comparison results show that the proposed fuzzy sliding mode controller effectively eliminates the sliding mode control chattering phenomenon as the slave hand stabilizes the tracking velocity of the master hand. Consequently, the system exhibits improved dynamic performance.
Publisher
Fuji Technology Press Ltd.
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction
Reference21 articles.
1. J. H. Chen, X. H. Mu, F. P. Du, and H. L. Gao, “Key technologies of telepresence in time-delayed teleoperation system: Review and analysis,” 2013 3rd Int. Conf. on Mechanical Science and Engineering, pp. 48-55, 2013.
2. B. Aude and R. Stephane, “A review of haptic feedback teleoperation systems for micromanipulation and microassembly,” IEEE Trans. on Automation Science and Engineering, Vol.10, pp. 496-502, 2013.
3. M. Bowthorpe, M. Tavakoli, and H. Becher, “Smith predictor-based robot control for ultrasound-guided teleoperated beating-heart surgery,” IEEE J. of Biomedical and Health Informatics, Vol.18, pp. 157-166, 2013.
4. R. Q. Wang, C. J. Xia, W. J. Gu, and K. H. Li, “Fuzzy singularly perturbed model and stability analysis of bilateral teleoperation system,” Proc. of the 30th Chinese Control Conf., pp. 3664-3668, 2011.
5. P. G. Griffiths and A. M. Okamura, “Defining performance tradeoffs for multi-degree-of-freedom bilateral teleoperators with LQG control,” Proc. of the IEEE Conf. on Decision and Control, pp. 3542-3547, 2010.
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献