Author:
Ngo Long Thanh, ,Pham Long The,Nguyen Phuong Hoang,Hirota Kaoru, ,
Abstract
Fuzzy directional relationship is extended from crisp spatial relationship and applied for many problems as image processing, scene description. This paper deals with fuzzy directional relationship and proposes an approach to extend fuzzy directional relation for robot navigation based on behavior. Fuzzy directional relation is used to model the unknown environment perceived by mobile robot. Collision avoidance behavior is built for mobile robot to avoid obstacles based on fuzzy logic controller whose inputs are fuzzy relationship and range to obstacle. The simulated results on graphic environment are showed to demonstrate our approach.
Publisher
Fuji Technology Press Ltd.
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction
Reference16 articles.
1. C. Fayad, and P. Webb, “Optimized Fuzzy Logic Based Algorithm for a Mobile Robot Collision Avoidance in an Unknown Environment,” 7thEuropean Congress on Intelligent Techniques and Soft Computing, Aachen, Germany, 1999.
2. Y. Nojima, N. Kubota, F. Kojima, and T. Fukuda, “Control of Behavior Dimension for Mobile Robots,” The Fourth Asian Fuzzy Systems Symposium, Tsukuba, Japan, pp. 652-657, 2000.
3. J. Fleicher, and S. Marsland, “Learning to Autonomously Select Landmarks for Navigation and Communication,” Robotics and Autonomous System, 37(4), pp. 241-260, 2001.
4. I. Bloch, and A. Saffiotti, “On the Representation of Fuzzy Spatial Relations in Robot Maps,” Intelligent Systems for Information Processing, Elsevier, NL, pp. 47-57, 2003.
5. P. Matsakis, and L. Wendling, “A New Way to Represent the Relative Position between Areal Objects,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.21, No.7, pp. 634-643, 1999.
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献