Extending Fuzzy Directional Relationship and Applying for Mobile Robot Collision Avoidance Behavior

Author:

Ngo Long Thanh, ,Pham Long The,Nguyen Phuong Hoang,Hirota Kaoru, ,

Abstract

Fuzzy directional relationship is extended from crisp spatial relationship and applied for many problems as image processing, scene description. This paper deals with fuzzy directional relationship and proposes an approach to extend fuzzy directional relation for robot navigation based on behavior. Fuzzy directional relation is used to model the unknown environment perceived by mobile robot. Collision avoidance behavior is built for mobile robot to avoid obstacles based on fuzzy logic controller whose inputs are fuzzy relationship and range to obstacle. The simulated results on graphic environment are showed to demonstrate our approach.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Reference16 articles.

1. C. Fayad, and P. Webb, “Optimized Fuzzy Logic Based Algorithm for a Mobile Robot Collision Avoidance in an Unknown Environment,” 7thEuropean Congress on Intelligent Techniques and Soft Computing, Aachen, Germany, 1999.

2. Y. Nojima, N. Kubota, F. Kojima, and T. Fukuda, “Control of Behavior Dimension for Mobile Robots,” The Fourth Asian Fuzzy Systems Symposium, Tsukuba, Japan, pp. 652-657, 2000.

3. J. Fleicher, and S. Marsland, “Learning to Autonomously Select Landmarks for Navigation and Communication,” Robotics and Autonomous System, 37(4), pp. 241-260, 2001.

4. I. Bloch, and A. Saffiotti, “On the Representation of Fuzzy Spatial Relations in Robot Maps,” Intelligent Systems for Information Processing, Elsevier, NL, pp. 47-57, 2003.

5. P. Matsakis, and L. Wendling, “A New Way to Represent the Relative Position between Areal Objects,” IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol.21, No.7, pp. 634-643, 1999.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Grid-based general type-2 fuzzy logic systems based on GPU computing;2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE);2013-07

2. General type-2 fuzzy logic systems based on refinement constraint triangulated irregular network;Journal of Intelligent & Fuzzy Systems;2013

3. Speedup of Interval Type 2 Fuzzy Logic Systems Based on GPU for Robot Navigation;Advances in Fuzzy Systems;2012

4. An Approach in Designing Hierarchy of Fuzzy Behaviors for Mobile Robot Navigation;Journal of Advanced Computational Intelligence and Intelligent Informatics;2007-03-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3