Noise Reduction with Inference Based on Fuzzy Rule Interpolation at an Infinite Number of Activating Points: Toward Fuzzy Rule Learning in a Unified Inference Platform

Author:

Uehara Kiyohiko,Hirota Kaoru, ,

Abstract

In order to provide a unified platform for fuzzy inference and fuzzy rule learning with noise-corrupted data, a method is proposed for reducing noise in learning data on the basis of a fuzzy inference method called α-GEMINAS (α-level-set and generalized-mean-based inference with fuzzy rule interpolation at an infinite number of activating points). It is expected to prevent fuzzy rules from overfitting to noise in learning data, especially when there is less learning data available for fuzzy rule optimization. The proposed method is named α-GEMI-ES (α-GEMINAS-based local-evolution toward slight linearity for global smoothness) in this paper. α-GEMI-ES iteratively performs α-GEMINAS and reduces the noise in each iteration. This paper mathematically proves that α-GEMI-ES effectively reduces the noise. The noise-reduction process is decisive and thus relies less on trial-and-error-based progress. The noise is reduced by a large amount in the early iterations and the amount of its reduction is decelerated in the later iterations where the deviation in the learning data is suppressed to a great extent. This property makes it easy to determine the termination conditions for the iterative process. Simulation results demonstrate that α-GEMI-ES properly reduces noise as the mathematical proof suggests. The above-mentioned properties indicate that α-GEMI-ES is feasible in practice for the unified platform.

Publisher

Fuji Technology Press Ltd.

Subject

Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3