Fuzzy Rule Interpolation and Extrapolation Techniques: Criteria and Evaluation Guidelines
-
Published:2011-05-20
Issue:3
Volume:15
Page:254-263
-
ISSN:1883-8014
-
Container-title:Journal of Advanced Computational Intelligence and Intelligent Informatics
-
language:en
-
Short-container-title:JACIII
Author:
Tikk Domonkos, ,Johanyák Zsolt Csaba,Kovács Szilveszter,Wong Kok Wai, , ,
Abstract
This paper comprehensively analyzes Fuzzy Rule Interpolation and extrapolation Techniques (FRITs). Because extrapolation techniques are usually extensions of fuzzy rule interpolation, we treat them both as approximation techniques designed to be applied where sparse or incomplete fuzzy rule bases are used, i.e., when classical inference fails. FRITs have been investigated in the literature from aspects such as applicability to control problems, usefulness regarding complexity reduction and logic. Our objectives are to create an overall FRIT standard with a general set of criteria and to set a framework for guiding their classification and comparison. This paper is our initial investigation of FRITs. We plan to analyze details in later papers on how individual techniques satisfy the groups of criteria we propose. For analysis,MATLAB FRI Toolbox provides an easy-to-use testbed, as shown in experiments.
Publisher
Fuji Technology Press Ltd.
Subject
Artificial Intelligence,Computer Vision and Pattern Recognition,Human-Computer Interaction
Reference45 articles.
1. S. Blažič and I. Škrjanc, “Design and stability analysis of fuzzy model-based predictive control – a case study,” J. of Intelligent and Robotic Systems, Vol.49, No.3, pp. 279-292, 2007. 2. D. Hládek, J. Vaščák, and P. Sinčák, “Hierarchical fuzzy inference system for robotic pursuit evasion task,” Proc. of SAMI 2008, 6th Int. Symposium on Applied Machine Intelligence and Informatics, Herl’any, Slovakia, pp. 273-277, 2008. 3. Z. C. Johanyák and S. Kovács, “Polar-cut Based Fuzzy Model for Petrophysical Properties Prediction,” Scientific Bulletin of “Politehnica” University of Timisoara, Romania, Transactions on Automatic Control and Computer Science, Vol.57/67, No.24, pp. 195-200, 2008. 4. Z. C. Johanyák, R. Parthiban, and G. Sekaran, “Fuzzy Modeling for an Anaerobic Tapered Fluidized Bed Reactor,” Scientific Bulletin of “Politehnica” University of Timisoara, Romania, Transactions on Automatic Control and Computer Science, Vol.52/66, No.2, pp. 67-72, 2007. 5. S. Kovács and L. T. Kóczy, “Application of Interpolation-based Fuzzy Logic Reasoning in Behaviour-based Control Structures,” Proc. of the FUZZ-IEEE’04, IEEE International Conference on Fuzzy Systems, Budapest, Hungary, pp. 1543-1548, 2004.
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|